
Lattice gas with a weak long-range positive potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 3887

(http://iopscience.iop.org/0305-4470/20/12/035)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 20:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 20 (1987) 3887-3894. Printed in the UK 

Lattice gas with a weak long-range positive potential 
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Abstract. In this paper we present a statistical mechanical analysis for a one-dimensional 
lattice gas in which the pair interaction potential is exponential and repulsive of Kac type 
d ( x )  = a exp(-y/xl) with a >O, 1xI> 0 (this analysis is complementary to the one studied 
by Newman for a one-dimensional fluid). 

The main objectives of this work are the following. First, we derive an analytical 
expression (in the weak long-range limit, y +  0 )  for the traces and the maximum eigenvalues 
of the Kac operators. Second, we derive the equation of state for the repulsive lattice gas 
in the weak long-range limit. Furthermore, we mention the possibility of the application 
of this model to study classical problems in biophysics. Third, we find interesting properties 
for the non-Hermitian Kac operator which suggest that the spanning property for this 
operator is possible. 

1. Introduction 

As is known, statistical mechanical analysis for a one-dimensional lattice gas, in which 
the pair potential interaction is of Kac [ l ]  type: 4(x )  = -a exp(-ylxl), leads to the 
existence of a phase transition [3, 41 if one sets a = a,y and then lets y + 0 (i.e. for a 
weak and very long range force). These models are of great interest because the 
partition function can be treated rigorously and exact results are obtained. Furthermore, 
a parallel analysis can be made for a < 0, because the kernel that appears in the integral 
equation remains Hermitian, i.e. Ising model field free [ 5 ] .  

However, there are exceptions as a lattice gas (equivalent to the Ising model with 
field [4]) where the kernel that appears in the integral equation is algebraically 
symmetric but not Hermitian. A similar case has been studied by Newman [2] (for a 
one-dimensional fluid), who pointed out that the eigenvalue expansion for this kernel 
may not be justified in this case (as in the case of the symmetric kernel that appears 
in the Kac model). 

In  Q 1 we find an  analytic expression for two kernels, i.e. for K " ' ( x ,  y )  aqd for 
K ( < ) ( x ,  y )  when we assume repulsive and attractive Kac potentials respectively. The 
superscript is used to appoint the type of potential, i.e. repulsive (>)  or attractive (<). 
Then using a very simple heuristic argument that involves the result mentioned above, 
we find an analytic expression for the maximum eigenvalue, for the non-Hermitian 
kernei, in the weak long-range limit (i.e. y+O) .  Then we derive the equation of state 
for the repulsive lattice gas in a straightforward form and prove that the transition 
phase is not possible in this system, as is known. Furthermore in this section, we 
mention the application of this model to concrete biophysical processes, i.e. to study 
the conformational transition in homopolypeptide, induced by p H  change. It is 
important to point out that if we are only interested in computing the equation of state 
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for the repulsive lattice gas in the long-range limit, it can be derived from the virial 
expansion if we assume that the physical system consists of a single fluid phase [2]. 
However, in this application to biophysical problems [6,7] we have been able to show 
the importance of knowing an analytic expression for the maximum eigenvalue. 

Finally, in 0 3 we show that the differential equation which satisfied the non- 
Hermitian kernel K '  >'(x, y )  to order y ,  can be considered as an analytic continuation 
of one differential equation for which the spanning property is known to hold. 
Furthermore, some of the mathematical difficulties to be overcome are outlined, i.e. 
the proof that the spanning properties for the non-Hermitian kernel persist when y 
vanishes. 

2. The maximum eigenvalue of K"'(x,y) in the long-range limit, y+O 

The grand partition function for the one-dimensional model of lattice gas is [4] 

3 ( L , , i ,  T ) =  i . . . i A'c'Iexp(P c y$(yl i - j l )E,E,)  
r , = 0  F L = O  ' < I  

- x 

- -Ix dx,...dxLW(x,)(l+Ae'"'L) 
-X - X  

L - l  - 
x n P(x,lx,+,; 1)(1+A ebL"l) (2) 

] = I  

when we assume the Kac type potential: $ (x )  = -a exp(-ylxl). The derivation of 
equation (3) (the Kac equation) is given by [4] and it is not reproduced here. We 
simply give the main result 

K(<) (x ,  y )+ (x )  dx = E" ' + ( y )  

where the symmetric kernel is given by 

and the factors in the kernel K"'(x,y) are 

(3) 

On the other hand, if we choose the repulsive poteritial ( (Y < 0) the non-Hermitian 
kernel K(>'(x,  y )  replaces K ( < ) ( x ,  y )  in the integral equation given by (31, where now 
~ " ' ( x ,  y )  verifies 

It is well known that in the thermodynamic limit the maximum eigenvalue of the 
Kac integral equation, given by (3), and the grand partition function, given by equation 
( l ) ,  are related by the following expression 

1 
lim -In 3 = In Eo.  
L - x  L 
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Then, all the thermodynamic parameters are given in terms of Eo or appropriate 
derivates thereof. Instead of finding the maximum eigenvalue Eo directly from (3 )  we 
consider more convenient an  analysis which involves the traces for K”’ (x ,y )  and 
K‘”(x ,y) .  To do  this we will show first that it is possible to obtain the trace U:’, 
for the kernel K(”(x ,  y )  from the trace a:’, for the kernel K ” ) ( x ,  y ) ,  in the long-range 
limit, if we make the substitution G + - G for any value of N. Second, using the above 
result we will show that the maximum eigenvalue for the non-Hermitian kernel can 
be obtained using a simple heuristic argument. 

For the evaluation of the trace, it is necessary to solve 

where K ( N )  is the N t h  iterate of the kernel K(x ,  y ) .  When the pair potential is repulsive, 
the kernel K(’)(x, y )  is given by ( 5 ) .  For this case the trace is given by (6) and it can 
be written as 

-I 

where 2 = i( G Y ) ” ~  and j ,  is either element of ensemble (1 , .  . . , k ) .  In ( 7 )  we can see 
the first and  last terms are a particular case of the intermediate term. Then the problem 
to solve is 

J h f l h + l  

By introducing the new variables 

t1 = ( x 2 - x I  where E = (1 

5, = (x,+, - x, e-’)€ 

with the Jacobian 
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Then we solve the system given by (9) for 5 as 
-1  x l={5 ,+~ , - , e - '+ . .  .+t1 exp[-(j-l)y]}[1-exp(-jy)I-'~ 

x, = 
(12) 

Now, if we expand the exponential for y small and retain the O( y )  term, the next 

+ t,-2e-y + . . . + 5, exp[-(j  - l)y]}[ 1 - exp(-jy)]- 's- ' .  

expression is obtained 

x l  ={5,+5,- l (1-y)+.  . . + 5 1 [ 1 - ( j - l ) y I } & / j ~ " 2  

x, = { t, - I + 5, - 2 (  1 - y ) + . . . + 5, [ 1 - ( j - 1 ) y I}&/ j y  
(13) 

Then in the limit y + O  we obtain the following expressions for x 

z ( x , - t x 2 +  . . .+  ~ k ) = i ~ ( 5 ' + 5 ~ + . . . + 5 ~ ) ~ / j  (14) 

where 
A 1- Z = i d $  

The above equation is valid for any k, which verified 0 d k d N. Then we obtain 
for the trace, in the long-range limit, the expression 

lim y+O(yu',>') =(27r-" 'N- '  
X k N 

hkCk( 1 exp[i&(k/N)(] exp(-5'/2) d t )  
k = O  X 

( 1 5 )  

where Ck represents the number of ways to take k elements of N. In the derivation 
of (15) we take into account that the Jacobian is given by 

J, = ( 2 ~ ) - " ~ / j y  for y small. (16) 

Solving the integral for 6, we find 

N 

lim y + O( yu">')  = " V I  A kc, exp(- j k 2 /  N )  
1. 

and this expression is valid for any value of N. Remember that the computation of 
trace is related to the maximum eigenvalue of the integral equation given by (3),  
through the relation: 

where = limy+,, ( y ~ , ~ ) .  

by interchanging the thermodynamic limit and the weak long-range limit. 

that an equivalent expression for the trace is found: 

These relations, justified by Newman [ 2 ] ,  facilitate the computation of the trace 

If we repeat the above development, but for K ' < ' ( x , y ) ,  it is not difficult to show 

If we compare (17) for the trace of K " ' ( x ,  y )  and (19) for the trace of K i - ' ( x , y ) ,  we 
see that it is possible to obtain 8 G '  from 8';' making the substitution $ +  6 for any 
value of N in the long-range limit. 
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With the above result, we can now reason heuristically as follows: we can obtain 
~ 5 ’  from o(N0 in a straightforward form making the substitution ;+ -6. As this 
change does not depend on the value of N, we hope that the result will be valid for 
N + 00. However, in the thermodynamic limit, if we use the relation 

lim N+co(t3N)i”=Eo (20) 

where aN = lim y + 0 ( y g N ) .  We can obtain the maximum eigenvalue Eh” for 
K ( ” ( x ,  y)  from the maximum eigenvalue E;” for K ( < ) ( x ,  y) ,  making the substitution 
6+-$, 

It is known [3] that, in this limit, the maximum eigenvalue is given by 

7 7 =  ( P +  
77? lim In Eh” = In( 1 + A e” )  -- 

7-0 4 t  

as p is a solution of 

( A  e” -1) 
( A  e ” + l ) ’  

p = v  

Then EL”, the maximum eigenvalue for K ( > ) ( x ,  y), is given by 

77 = ( p  - ;) 
t7; 

Y - 0  4; 
l imln E f ’ = I n ( l + A  e’)+- 

as p is a solution of 

(1 - A  e” )  
(1+A e’)‘ 

p = v  

Using the maximum eigenvalue, as is given by (23), we can obtain one analytic 
expression of the equation of state when the pair potential interaction is repulsive, 
computing the next relation (where the prime denotes differentiation with respect to 
A, the activity): 

p = A E ; ‘ > ) = ( l + A - ’ e - q )  

and, by (24) eliminating A and p, we can find for p 

p p  = pap’ - In( 1 - p ). 

This expression will be compared with the one obtained by Kac [4] for the single 
phase region in the limit y+O. It is not difficult to see that in this case there is no 
transition phase, since for any value of the fugacity, there are two equal minima, as 
can be seen in (24). In consequence p is a monotone non-decreasing function of the 
density. 

We pause here to make a brief comment about the biophysical application of this 
lattice gas model with a pair repulsive potential. It is known that certain biopolymers 
in solution show a typical secondary structure, i.e. the Puling and Corey [9] a-helix. 
Each repeating unit (monomer) of this structure can appear charged or  uncharged 
depending on environmental variables such as pH, ionic strength, etc. In particular, 
if all monomers are equal, then only the repulsive interaction (of Coulombic origin) 
between similarly charged monomers will appear. The incorporation of this electro- 
static effect into a statistical mechanics model involves certain difficulties, i.e. the 
Coulombic interaction is long range in nature and is not easily taken into account in 
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an essentially nearest-neighbour model. However, we have been able to include this 
effect in a theoretical model which is based on two hypotheses. 

(a )  A one-dimensional a-helix representation is assumed. 
(b)  The repulsive interaction between similarly charged monomers are taken into 

account in the grand partition function through a repulsive Kac type potential. 
Through hypothesis (a) we can see the above-mentioned processes, i.e. the equili- 

brium between charged and uncharged monomers, as a one-dimensional lattice gas. 
Through hypothesis (b),  we introduce a long-range interaction which is characteris- 

tic of Coulombic interaction i.e. evaluating the grand partition function in the limit y + 0. 
The analytic solution of the above theoretical model is given by (23). Through its 

application we have been able to prove that, if we take into account two essential 
aspects of the Coulombic interaction in homobiopolymers, i.e. repulsive and  long 
range, even omitting the real structure of the interaction potential, we can find analytical 
information free of fitting parameters [6]. 

Furthermore, we have been able to show that the study of more complex phenomena, 
such as the helix-coil transitions induced by pH change, can be explained if we use 
(23) as a statistical weight to take into account the Coulombic origin contribution to 
the grand partition function [ 7 ] .  It is important to point out that in both cases we 
obtain good agreement between theoretical and experimental data. 

3. Properties of the non-Hermitian kernel for y small 

If we are interested in studying the eigenvalue problem to the lowest order in y it is 
known [8] that equation (3) can be reduced to the study of the following differential 
equation (where the prime denotes differentiation with respect to x )  

(25) 4"+(E - q ( x ) ) 4  = 0 

where we put 

and 

yq(x)  = tyx2  - In{l + A  exp[( ty)"2x]}, ( 2 7 )  

I f  we want to go beyond the lowest order in y, one must use the Baker-Hausdorf 
formula [4] or follow a perturbation technique similar to that used by Kac et a1 [3]. 

On the other hand, if we choose the repulsive potential ( c y  < 0) the non-Hermitian 
kernel K" ' (x ,y)  given by (5) replaces K'"(x,y) in the integral equation given by 
(3). In this case, the problem to solve, to the lowest order in y, is 

( 2 8 )  - 4 " + ( q ( i x )  - [)$ = 0 

where 

E '  " = exp[ y ( i  - [ ) I  (29) 

Equation (28)  can be seen as a function F ( 4 ,  q( ix ) ,  [ )  which verified 

F ( 4 ,  q( ix ) ,  5) = 0 (31) 
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over all the points in the imaginary axis. Then take into account that q(ix) is an 
analytic function of x for y small, 0 < A # 1 and for any value of 6, even at ; = 0, and 
if we assume that $ is analytic, we can easily prove (using the analytic prolongation 
theorem) that the (31) verifies 

(32) N, q(x) ,  5*) = 0 

- I j ” + ( q ( x ) - 5 * ) l j = 0  (33) 

yq(x)  = i y x 2 + I n { l + ~  exp[(;y)”‘x]} (34) 

[* = -5. (35) 

In E F ’ =  q m l n + O ( y )  (36) 

over all the points in the real axis. Naturally, we can see equation (32) as 

where now 

and 

It follows that, to order y, the maximum eigenvalue is given by 

with 

qmln  = In( 1 + A  e ” )  + v2 /46  

with 77 given by (24). 
Since the function q ( x )  possesses a unique minimum, independent of the value of 

the 6 parameter, and take into account that (33) possesses analytic eigenstates and 
eigenvalues, by the analytic prolongation theorem, we can conjecture that the non- 
Hermitian kernel could be expanded as 

for small but non-zero y. 

So far we have assumed y small but we have said nothing about the validity of 
the analytic continuation when y vanishes. If we compare the maximum eigenvalue 
obtained through the above analysis with the one obtained in the preceding section, 
i.e. for y --* 0, we find a suggestive resemblance between them. However, rigorous proof 
that the spanning properties for the non-Hermitian kernel persist, o r  not, in y = O  
would represent some of the mathematical difficulties still to be overcome, and further- 
more an essential link between our intuition and the facts. 
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